Constitutively Active Src Tyrosine Kinase Changes Gating of HCN4 Channels Through Direct Binding to the Channel Proteins
نویسندگان
چکیده
منابع مشابه
Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531.
We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimi...
متن کاملColonic inflammation alters Src kinase-dependent gating properties of single Ca2+ channels via tyrosine nitration.
Nitration of L-type calcium channels during colonic inflammation impairs phosphorylation by the tyrosine kinase, Src kinase. This results in decreased calcium currents. The purpose of this study was to determine the mechanism of the downregulation of Ca2+ currents in colonic inflammation. In whole cell voltage clamp of mouse single smooth muscle cells, long-duration depolarization produced noni...
متن کاملSrc Tyrosine Kinase Is a Novel Direct Effector of G Proteins
Heterotrimeric G proteins transduce signals from cell surface receptors to modulate the activity of cellular effectors. Src, the product of the first characterized proto-oncogene and the first identified protein tyrosine kinase, plays a critical role in the signal transduction of G protein-coupled receptors. However, the mechanism of biochemical regulation of Src by G proteins is not known. Her...
متن کاملA novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel...
متن کاملA caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins.
Pacemaker (HCN) channels have a key role in the generation and modulation of spontaneous activity of sinoatrial node myocytes. Previous work has shown that compartmentation of HCN4 pacemaker channels within caveolae regulates important functions, but the molecular mechanism responsible is still unknown. HCN channels have a conserved caveolin-binding domain (CBD) composed of three aromatic amino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cardiovascular Pharmacology
سال: 2006
ISSN: 0160-2446
DOI: 10.1097/01.fjc.0000211740.47960.8b